Deret Matematika yang Asyik Silakan Coba

Dapatkah Anda membayangkan jumlah dari seluruh bilangan bulat dari 1 sampai dengan 2000?

Menjumlahkan sebanyak 2000 bilangan?

Bisa sih, bisa…tapi berapa lama waktu yang dibutuhkan?

Anda dapat dengan mudah menjumlahkan itu semua. Ikuti cara Paman APIQ maka dengan cepat Anda dapat menjumlah semua bilangan di atas. Caranya adalah pasangkan bilangan pertama dengan terakhir.

1 + 2000 = 2001
2 + 1999 = 2001
3 + 1998 = 2001

Jadi jumlah semua = 2001 x 1000 = 2.001.000 (Selesai).

Baik, tentu kita dapat latihan dengan beragam variasi bilangan. Bersiaplah…!

1 + 2 + 3 + … … … + 20 = …
1 + 2 + 3 + … … … + 200 = …
1 + 2 + 3 + … … … + 400 = …

(Jawaban: 210, 20100, 80200)

Berikut Paman APIQ akan mencatat beberapa rumus deret yang menarik. Anda dapat mencatatnya juga barangkali sewaktu-waktu membutuhkannya.

A. Jumlah deret bilangan asli

S(n) = 1 + 2 + 3 + … … … + n = n(n+1)/2

n(n + 1) = 2 S(n)

B. Jumlah deret kubik bilangan asli

S(n^3) = 1^3 + 2^3 + 3^3 + … … … + n^3 = 1/4 (n(n+1))^2

[ n(n+1) ]^2 = 4 S(n^3)

C. Jumlah deret kuadrat bilangan

S(n.(n+1)) = 1.2 + 2.3 + 3.4 + … … … n.(n+1) = 1/3 (n.(n+1)(n+2))

n(n+1)(n+2) = 3 (S(n.(n+1))

Sedangkan S(n^2) dapat kita turunkan dari persamaan di atas.

S(n^2) + S(n) = 1/3 (n.(n+1)(n+2))

S(n^2) = 1/6 (n.(n+1)(2n+1))

Bagaimana menurut Anda?

Salam hangat…
angger | agus Nggermanto | Pendiri APIQ

Advertisements

Tuliskan komentar Anda

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s